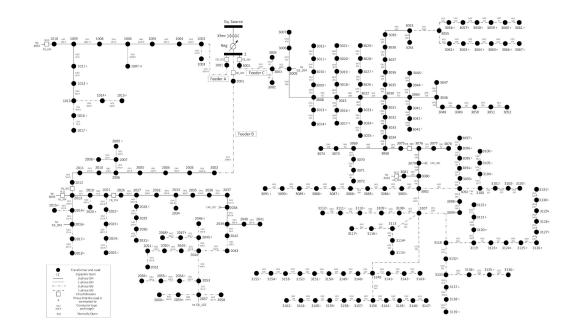
GridAI: Requirements & Engineering Standards

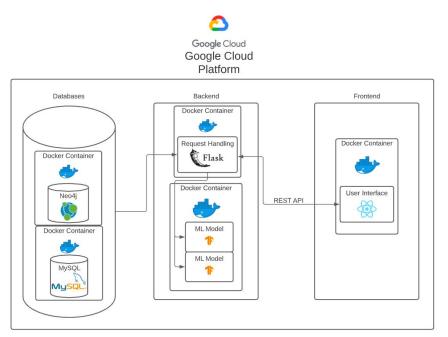
sdmay21-23@iastate.edu

Karthik Prakash Abir Mojumder

Justin Merkel


Abhilash Tripathy

Patrick Wenzel


Client: Dr. Gelli Ravikumar

Project Context

- Use Machine Learning on a simulated power grid to provide analytics and anomaly detection
 - Every node has some power output data associated
 - Static electrical properties
 - Location and connections in network

High-Level Design

Project Requirements

- Provide Real-time analysis of grid data
- Implement Machine Learning models to generate data predictions and anomaly detection over real time power grid data streams
- Frontend interface for grid data, predictions and anomaly visualization
- Use of Docker Containers and PowerCyber testbed working environment

Functional Requirements for Backend

- Technology Requirement
 - Python, Neo4j Database, TensorFlow 2.0, Docker, PowerCyber Testbed Environment
- Machine learning algorithms
 - Provide analyses and insight for simulated power grid
 - Predict transformer output
 - Classify potential anomalies within grid

Functional Requirements for Frontend

- Front-end receives data from backend
- Front-end interface for data visualization
 - Interface directly with backend
 - Graph-based visualization
 - Geographical representation of power grid
 - Charts for history and predictions for each node
 - Tabular data showing anomaly status for every node

Non-functional Requirements

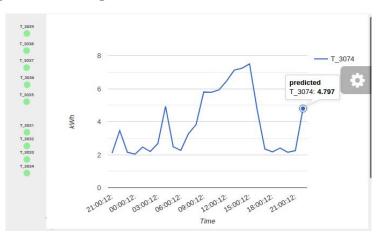
- Maintainability
 - Keep code modular
- Response time
 - Lightweight frontend to accommodate response rate of work heavy backend
- Clear Documentation of code
 - Future senior design teams can take over and upgrade the application

Engineering Constraints

- Only getting \$300 in trial credits when using the Google Cloud
- Only have 1 year's worth of real data and the rest has to be simulated

Engineering Standards

- IEEE/ISO/IEC 12207-2017: Software life cycle processes
 - <u>IEEE/ISO/IEC 29148-2018</u>: Systems and software engineering Life cycle processes Requirements engineering
- <u>IEEE/ISO/IEC 23026-2015</u>: Systems and software engineering Engineering and management of websites for systems, software, and services information


Technical Challenges: Backend

- Parsing data from database
 - SQLAlchemy
- Implementing real-time updates
- Simulating the openDSS model of the grid to generate new data

of the	scheduler	= Backgroun add_job(fun	dScheduler()		second=0, mi		="cron", minute=0)
0 10.105			1				
2017-12-20 20:00:42		0 15.726 11.7				6.731 11.153 1.67	
12.537 0 4.679 0						0 0 7.22	
4.679 0 3.29		0 2.864 0.6 0 118.56 1.				4.965 4.663 3.03 8.216 6.702 7.7	
6.806 10.078		0 54.84 2.8					0 8.565 9.327 12.34
9.731 3.794		0 11.467 14.6				14.359 9.255 13.12	
0 5.459						5.027 12.84 11.18	
3.335 7.2			0 0.738 0			3.161 3.459 3.96	
4.507 9.485		0 3.139 5.0			0 34.125		0 6.497 0 6.403
5.745 13.743						6.057 8.643 13.35	
7.56 12.363				725 14.789 22.			.172 13.416 3.289
		.855 7.535			865 7.382 5.395	3.69 11.793 8	.411 0 11.145 10.9
13.444 20.	654 10.32	0 0	3.866 6.848 20.	313 0.998 8	.78 4.577 11.416	8.729 3.91 6	.783 2.106
007 13.667 6.333 2.985 0 23.726 8.882 17.588 1.767 6.798 3.812							
2017-12-20 21:00:42		0 12.382 7.7				6.145 15.742 1.8	
4.082 0						0 0 7.7	
3.868 0		0 3.136 0.6				5.341 3.61 4.28	
0 3.353		0 119.08 2.0				10.772 7.019 7.70	
6.507 8.089		0 51.72 4.4					0 10.585 6.349 10.651
9.188 3.65		0 8.372 18.1				10.738 14.277 10.43	
0 4.248						5.267 11.536 11.96	
3.319 9.742			0 0.577 0			3.355 2.044 3.28	
3.52 9.454		0 3.049 3.7					0 5.65 0 5.94
5.235 7.41						7.453 8.432 8.40	
6.196 12.848				529 17.748 20.			7.57 10.738 2.798
		5.81 7.487			005 4.785 8.006 744 3.328 16.378		.936 0 11.51 11. .708 1.798
	.19 10.101 8.457 3.298	0 0 0	4.163 9.23 9. 10.074 14.703		744 3.328 16.378 3.522	9.12/ 3.3/8 5	.708 1.798

Technical Challenges: Frontend

- React uses asynchronous methods to update information before updating screen. This might cause very large data api calls to have more latency.
- Some components (d3-Grid/google linechart/react) required specific versions for them to work together, leading to outdated/fewer functions.

onClickNode = async(nodeID)=>{{
<pre>const val = await this.fetchValue(nodeID);</pre>
<pre>window.alert(`Current Value: \${val[0].currentValue}`);</pre>
<pre>const hist = await this.fetchHistory(nodeID);</pre>
<pre>let temparr = [['x',nodeID]];</pre>
<pre>let tempdata = [];</pre>
<pre>for(let i=0;i<hist["result"].length;i++){< pre=""></hist["result"].length;i++){<></pre>
<pre>let temp = hist["result"][i].split(" ")</pre>
<pre>tempdata = [String(temp[1]), Number(temp[2])]</pre>
<pre>temparr.push((tempdata))</pre>
3
<pre>const pred = await this.fetchPredictions(nodeID); console.log(pred)</pre>
<pre>let predVal = pred.split(":");</pre>
<pre>let temp = ["predicted",Number(predVal[1])]</pre>
<pre>temparr.push(temp);</pre>
<pre>console.log(temparr);</pre>
<pre>this.setState({lineData:temparr})</pre>

Questions?